78 research outputs found

    Surface-atom force out of thermal equilibrium and its effect on ultra-cold atoms

    Full text link
    The surface-atom Casimir-Polder-Lifshitz force out of thermal equilibrium is investigated in the framework of macroscopic electrodynamics. Particular attention is devoted to its large distance limit that shows a new, stronger behaviour with respect to the equilibrium case. The frequency shift produced by the surface-atom force on the the center-of-mass oscillations of a harmonically trapped Bose-Einstein condensate and on the Bloch oscillations of an ultra-cold fermionic gas in an optical lattice are discussed for configurations out of thermal equilibrium.Comment: Submitted to JPA Special Issue QFEXT'0

    Near-field heat transfer between graphene/hBN multilayers

    Full text link
    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with a hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e. surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structure does not increase monotonously with the number of layer in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.Comment: 10 pages, 11 figure

    Nonreciprocal heat flux via synthetic fields in linear quantum systems

    Full text link
    We study the heat transfer between N coupled quantum resonators with applied synthetic electric and magnetic fields realized by changing the resonators parameters by external drivings. To this end we develop two general methods, based on the quantum optical master equation and on the Langevin equation for NN coupled oscillators where all quantum oscillators can have their own heat baths. The synthetic electric and magnetic fields are generated by a dynamical modulation of the oscillator resonance with a given phase. Using Floquet theory we solve the dynamical equations with both methods which allow us to determine the heat flux spectra and the transferred power. With apply these methods to study the specific case of a linear tight-binding chain of four quantum coupled resonators. We find that in that case, in addition to a non-reciprocal heat flux spectrum already predicted in previous investigations, the synthetic fields induce here non-reciprocity in the total heat flux hence realizing a net heat flux rectification

    New asymptotic behaviour of the surface-atom force out of thermal equilibrium

    Full text link
    The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z31/z^3 at large distances (i.e. slower than at equilibrium), exhibits a sizable temperature dependence and is attractive or repulsive depending on whether the temperature of the substrate is higher or smaller than the one of the environment. Our predictions can be relevant for experiments with ultracold atomic gases. Both dielectric and metal substrates are considered.Comment: 4 pages, 3 figures. In press on Phys. Rev. Let

    Measurement of the Temperature Dependence of the Casimir-Polder Force

    Get PDF
    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter

    Radiation induced force between two planar waveguides

    Get PDF
    We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light propagating through them. We have calculated the dependence of the force on the slab separation by means of the Maxwell--Stress tensor formalism and we have discussed its main features for the different propagation modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively estimated the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure

    Hybrid thermal Yagi-Uda nanoantennas for directional and narrow band long-wavelength IR radiation sources

    Get PDF
    We investigate the possibility of spatially and spectrally controlling the thermal infrared emission by exploitation of the Yagi-Uda antenna design. Hybrid antennas composed of both SiC and Au rods are considered and the contributions of emission from all the elements, at a given equilibrium temperature, are taken into account. We show that the detrimental effect due to thermal emission from the not ideal parasitic elements drastically affect the performances of conventional thermal Au antennas in the 12 ÎĽm wavelength range. Nevertheless, our results show that the hybrid approach allows the development of efficient narrow-band and high directivity sources. The possibility of exploiting the Yagi-Uda design both in transmission and in reception modes, may open the way to the realization of miniaturized, efficient, robust and cheap sensor devices for mass-market applications. 2020 Optical Society of America

    Optimization of highly circularly polarized thermal radiation in α\alpha-MoO3_3/β\beta-Ga2_2O3_3 twisted layers

    Full text link
    We investigate a bi-layer scheme for circularly polarized infrared thermal radiation. Our approach takes advantage of the strong anisotropy of low-symmetry materials such as β\beta-Ga2_2O3_3 and α\alpha-MoO3_3. We numerically report narrow-band, high degree of circular polarization (over 0.85), thermal radiation at two typical emission frequencies related to the excitation of β\beta-Ga2_2O3_3 optical phonons. Optimization of the degree of circular polarization is achieved by a proper relative tilt of the crystal axes between the two layers. Our simple but effective scheme could set the basis for a new class of lithography-free thermal sources for IR bio-sensing.Comment: 11 pages, 6 figure

    Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies

    Full text link
    We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different temperatures, and immersed in a environmental radiation at a third different temperature. We derive explicit closed-form analytic expressions for the correlations of the electromagnetic field, and for the heat transfer and Casimir-Lifshitz force, in terms of the bodies scattering matrices. We then consider some particular cases which we investigate in detail: the atom-surface and the slab-slab configurations
    • …
    corecore